
TextGrid_R121_v1.0.doc 1 13.12.2010

Roadmap Integration

Grid / Repository

(R 1.2.1)

Version – 13.12.2010

Work Package – 1

Responsible Partner – SUB Göttingen

TextGrid

Virtual Research Environment for the Humanities

TextGrid_R121_v1.0.doc 2 13.12.2010

Project: TextGrid – Virtual Research Environment for the Humanities

Funded by the German Federal Ministry of Education and Research (BMBF) by

Agreement: 01UG0901A

Project Duration: June 2009 – May 2012

Document Status: Living Document

Distribution: public

Authors:

Andreas Aschenbrenner (SUB)

Jörg-Holger Panzer (SUB)

Wolfgang Pempe (SUB)

TextGrid_R121_v1.0.doc 3 13.12.2010

Table of Contents

1. Introduction ... 4

2. TextGrid Basics – Concepts and Infrastructure ... 4

2.1. The Logical View.. 4

2.1.1. Project and Aggregation ... 4

2.1.2. Object Types: Item, Edition, Work and Collections 5

2.2. The Physical View .. 6

2.3. Search Index and Baseline Encoding .. 7

2.4. The Three Pillars of TextGrid .. 8

2.5. Rights Management Issues and Publication .. 9

3. WissGrid and the Grid-Repository as Part of the LTP-Architecture for

D-Grid ... 10

3.1. General Concept .. 10

3.2. Profile for Interactive Research Environments 11

3.3. Integration with TextGrid .. 13

3.3.1. Fedora ... 14

3.3.2. Grid Storage: iRODS .. 20

TextGrid_R121_v1.0.doc 4 13.12.2010

1. Introduction

As one of the Community Grid projects of the first D-Grid call, TextGrid established a Virtual

Research Environment for the Humanities in Germany. This VRE is part of a larger infra-

structure enabling the collective utilisation and exchange of data, tools and methods – with a

strong focus on text-oriented research. The central component of this infrastructure is a grid-

based repository ensuring the sustainable availability of and access to research data, the so-

called TextGrid Repository. This repository has proven itself as a stable and reliable storage

device. While currently providing Bitstream Preservation on a very basic level, TextGrid aims

for a repository solution that supports the curation and long-term preservation of research

data. With the proposal for the second project phase (2009-2012), TextGrid committed itself

to implement the long-term storage architecture to be developed by the WissGrid project, an-

other D-Grid project bringing together the five academic communities of the first D-Grid call

to develop generic solutions and blueprints for academic grid communities and users. This

report gives an overview of the concepts and technical solutions developed by WissGrid – as

far as TextGrid is concerned – and describes the technical context and measures for the im-

plementation of these solutions with the TextGrid infrastructure. For a better understanding of

the chosen implementation strategy we'll start with an overview of the basic concepts in

TextGrid.

Since the interaction with WissGrid and the implementation of the WissGrid solutions is a

highly dynamical process, this report is considered to be a living document, to be updated

(more or less) regularly.

2. TextGrid Basics – Concepts and Infrastructure

2.1. The Logical View

2.1.1. Project and Aggregation

Starting the TextGrid Lab, the eclipse-based TextGrid client application, one of the first tools

the TextGrid user is confronted with is the omnipresent Navigator (figure 1). Offering the

same (and some additional) functionality as an ordinary file browser, this tool provides access

to the objects in the grid.

TextGrid_R121_v1.0.doc 5 13.12.2010

Figure 1: The TextGrid Navigator

The top-level elements of the hierarchical structure displayed by the Navigator are the so-

called Projects. The Project serves as container for the (role-based) rights management –

comparable with the Bucket in Amazon S3
1
 or the Context in eSciDoc

2
. Any TextGrid object

belongs to a project. TextGrid users can start a new project in order to create new or copy ex-

isting objects. The creator of a project can select other TextGrid users, associate them with the

project and assign specific roles to them. A Project consists of an arbitrary number of objects

(Simple Object) and Aggregations, (virtual) folders, that can contain objects and other Aggre-

gations in turn. Aggregations are also objects, though specialised ones. Every object is cou-

pled with a set of metadata.

2.1.2. Object Types: Item, Edition, Work and Collections

In order to avoid redundancy, misspellings etc. and to keep the management of bibliographic

metadata straightforward and simple, bibliographic metadata is spread on three types of O b-

jects: Item, Edition and Work – inspired by the FRBR model
3
. While – in terms of metadata –

Item is the most generic object type that is not necessarily a bibliographic object in a narrower

sense (could also be an aggregation), Edition and Work objects must conform to a specific

metadata sub-schema. While Edition is modelled as an Aggregation (with a specific set of

metadata), a Work object is modelled as an empty Simple Object with work-specific metadata.

The connection between instances of these three object types is modelled via relations be-

tween Item and Edition (aggregates), and Edition and Work (isEditionOf), cf. figure 2:

1
 http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?UsingAuthAccess.html

2
 https://www.escidoc.org/JSPWiki/en/ContentModel

3
 http://www.ifla.org/en/publications/functional-requirements-for-bibliographic-records

http://docs.amazonwebservices.com/AmazonS3/latest/dev/index.html?UsingAuthAccess.html
https://www.escidoc.org/JSPWiki/en/ContentModel
http://www.ifla.org/en/publications/functional-requirements-for-bibliographic-records

TextGrid_R121_v1.0.doc 6 13.12.2010

Figure 2: Bibliographic Hierarchy.

Besides Item, Edition and Work, the TextGrid metadata schema
4
 provides for a fourth object

type, the Collection. Not unlike the Edition object, a Collection is also modelled as an Aggre-

gation, but with a more generic, non-bibliographic metadata set. For instance, a Collection

can be used to aggregate non-bibliographic objects (or mash up bibliographic and non-

bibliographic Items) and assign them to a common temporal or spatial scope – or even provide

a description for this selection.

2.2. The Physical View

The world is flat. Ever was. The same goes for TextGrid. Hierarchies are only built by the ap-

plication logic of the upper levels of the TextGrid infrastructure, primarily by the TextGrid

Lab:

 The Projects are modelled according to information extracted from the rights man-

agement system (OpenRBAC / LDAP)

 Aggregation Objects (generic ones as well as Editions and Collections) have no con-

tent except a list of URIs of the “contained” objects
Out of this information the Navigator builds its tree view.

Physically, on (grid) file system level, TextGrid objects consist of file pairs (tuples), one file

for the metadata and one for the object itself (resp. the content), such as:

textgrid:1234ab.1.meta

textgrid:1234ab.1

This brings us to the identifiers used in TextGrid. TextGrid-URIs are NOIDs
5
 with a

textgrid: prefix and an ascending numerical suffix indicating the revision number. A

TextGrid object is identified and referenced (metadata and elsewhere) by its URI e.g. – to

stick with the example: textgrid:1234ab.1 for the first, textgrid:1234ab.2 for the sec-

ond revision and so on. Per default, the Navigator displays only the latest revision of an ob-

ject. The latest revision of an object can also be referenced by a logical URI without suffix: If

textgrid:1234ab.2 the newest/latest revision of an object, calling or referencing

textgrid:1234ab will produce the same physical object. This concept is similar to the eSci-

4
 http://www.textgrid.info/schemas/textgrid-metadata_2010.xsd

5
 https://confluence.ucop.edu/display/Curation/NOID

http://www.textgrid.info/schemas/textgrid-metadata_2010.xsd
https://confluence.ucop.edu/display/Curation/NOID

TextGrid_R121_v1.0.doc 7 13.12.2010

Doc solution
6
 – except the underlying terminology (TextGrid: Revision, eSciDoc: Version)

and the fact that creating a new revision in TextGrid is a deliberate action to be performed by

the user while in eSciDoc versions are generated automatically with every update of an object.

A possible use case for using logical URIs is to use them as references in a Collection Object,

so that this Collection contains always the latest version of the respective objects. As every

Aggregation, the content of a Collection Object consists only of a list of the URIs of the con-

tained objects – formatted in RDF as a very simple Resource Map according to the OAI-ORE

specification
7
:

<rdf:RDF xmlns:ore="http://www.openarchives.org/ore/terms/"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description xmlns:tei="http://www.tei-c.org/ns/1.0"
 rdf:about="textgrid:26dt.1">

 <ore:aggregates>textgrid:21sn</ore:aggregates>
 <ore:aggregates>textgrid:21sp</ore:aggregates>
 <ore:aggregates>textgrid:21sq</ore:aggregates>
 <ore:aggregates>textgrid:21sr</ore:aggregates>
 <ore:aggregates>textgrid:21ss</ore:aggregates>
 <ore:aggregates>textgrid:21st</ore:aggregates>
 ...
 ...
 <ore:aggregates>textgrid:21w4</ore:aggregates>
 <ore:aggregates>textgrid:21w5</ore:aggregates>
 <ore:aggregates>textgrid:21w6</ore:aggregates>
 </rdf:Description>
</rdf:RDF>

‘External’ Objects

There is also a mechanism to include objects in TextGrid that are stored or „hosted‟ outside

the TextGrid Rep. It is possible to perform a metadata-only ingest with metadata provided by

or harvested from other repositories. In such a case, TextGrid includes the URL of this object

in the (TextGrid-)metadata and creates an otherwise empty object. In this way, TextGrid users

are enabled to work with „external‟ objects for instance by embedding them in Collections or

perform queries across the metadata of both „internal‟ and „external‟ objects.

Physical Type Metadata Type

Aggregation Item

Edition

Collection

(Simple) Object Item

Ø Work

Item (External Object)

2.3. Search Index and Baseline Encoding

Since performing queries directly on data stored in a potentially distributed and replicated grid

environment is neither quick nor straightforward, all relevant information is gathered in a

search index consisting of an XML database (metadata, aggregation content, XML-encoded

6
 https://www.escidoc.org/media/docs/ges-versioning-article.pdf

7
 http://www.openarchives.org/ore/

https://www.escidoc.org/media/docs/ges-versioning-article.pdf
http://www.openarchives.org/ore/

TextGrid_R121_v1.0.doc 8 13.12.2010

object content) and an RDF triple store. The latter one is fed with relations such as isDerived-

From, isAlternativeFormatOf, hasSchema, aggregates, or hasAdaptor. The latter one needs

some explanation: To enable structured search and processing capabilities across XML data in

the TextGrid Repository, TextGrid developed the so-called Baseline Encoding, a text type-

specific encoding which is based on the TEI P5 standard
8
. The transformation of project-

specific XML into baseline-XML is performed by a so-called Adaptor (i.e. an XSLT

stylesheet) with every write and update operations on an object with XML content – provided

the hasAdaptor relation is set. The baseline instance of an object is kept only in the search in-

dex, not in the grid.

2.4. The Three Pillars of TextGrid

The main constituents of the TextGrid middleware are the three utilities TG-auth*, TG-search

and TG-crud (figure 3) – implemented as web services.

Figure 3: The TextGrid Utilities

TG-auth* covers two aspects. With “N” replacing the asterisk, it provides for autheNtication

of users in the TextGrid environment. With “Z”, it serves as an authoriZation engine. As al-

ready mentioned, for authorization, TextGrid uses a role-based access control solution called

OpenRBAC
9
 where permissions are stored in an LDAP database. With logging in to

TextGrid, a session id is generated, which is passed around between the utilities and services,

to be used to check permissions with TG-auth*.

TG-search provides several interfaces for text retrieval and metadata search. The capabilities

of searching across XML data and the semantic (RDF) index are explained in the section be-

fore.

TG-crud is a web service to create, retrieve, update and delete TextGrid objects. It is the in-

terface to storing information to the grid environment, the search indices (see above) and the

role based access control system (RBAC) using TG-auth*. TG-crud also checks access per-

missions and ensures that the TextGrid repository stays consistent. Furthermore, it uses the

8
 http://www.textgrid.de/fileadmin/TextGrid/reports/baseline-all-en.pdf

9
 http://www.openrbac.de/en_startup.xml

http://www.textgrid.de/fileadmin/TextGrid/reports/baseline-all-en.pdf
http://www.openrbac.de/en_startup.xml

TextGrid_R121_v1.0.doc 9 13.12.2010

Adaptor Manager to convert XML documents into the TextGrid baseline encoding, which

also are stored in the XML database for efficient structural search. Additionally, the Adaptor

Manager is responsible for extracting relation information from metadata, TEI files and the

generated baseline-encoded files (such as contained links to other TextGrid objects and XML

schema references) and storing them to the RDF triple store. As may be easily comprehensi-

ble, TG-crud bundles most of the application logic of TextGrid and its middleware.

A detailed description of these utilities is given in Report 3.5
10

 (first project phase).

2.5. Rights Management Issues and Publication

The role-based rights management and the user's ability to invite others to join her Project

according to pre- or individually defined roles is one of the greatest strengths (i.e. enabling

collaboration) of TextGrid – but is also the source of some sophisticated application logic

slowing down things slightly. TG-search, for instance, has to ask for every match of a user‟s

query whether this user is allowed to “find” this object. For this (and other) reasons, there‟s

another, freely accessible search index where published objects are fed in. Since published

objects are „frozen‟. Accordingly, the now immutable object is being moved from the dy-

namic (frequent I/O operations) to a static grid storage instance. Being published, an object is

associated with a persistent identifier (Handle
11

), and its metadata and format is being vali-

dated. Furthermore, this object must be part of an Edition or Collection to assure a certain

quality level of the metadata.

Figure 4: TextGrid infrastructure and publishing workflow

10

 http://www.textgrid.de/fileadmin/TextGrid/reports/R3_5-manual-tools.pdf
11

 http://www.handle.net

http://www.textgrid.de/fileadmin/TextGrid/reports/R3_5-manual-tools.pdf
http://www.handle.net/

TextGrid_R121_v1.0.doc 10 13.12.2010

3. WissGrid and the Grid-Repository as Part of the LTP-

Architecture for D-Grid

3.1. General Concept

One of the main objectives of the WissGrid project is to develop a general concept for the

long-term archiving of primary research data for grid communities. WissGrid works together

with partners in D-Grid and in the digital preservation community to offer Bitstream Preser-

vation on grid resources, and to support user communities in content preservation and data

curation through tools and policy guidance (cf. Figure 5). Its architecture is designed to be

open, such that services can accommodate existing data management environments and

evolve over time.

Figure 5: Data preservation in the (D-)Grid communities.
12

Concerning digital curation, WissGrid distinguishes three levels (see figures 5 and 6) well

recognised in the preservation community and following the abstraction levels of digital ob-

jects suggested by Thibodeau
13

. These levels build upon each other and may influence and

support each other. The technical and organisational methods mentioned in the following are

exemplary, they may change depending on the context and evolve over time.

Bitstream Preservation - the integrity of each bit: Bitstream Preservation involves the

technical and organisational infrastructure for monitoring the physical stability of data, and

moving data to fresh and up-to-date carriers. Components of Bitstream Preservation include

durability of the hardware carriers and readers; their replication and recurrent integrity checks.

Content Preservation - processable data units: Citability and accessibility of data items

goes beyond the mere availability of the item's bits and touches e.g. upon the software with

which it was created and its format. Components of Content Preservation include persistent

identification, technology watch, as well as preservation services such as format conversion,

format validation, or emulation.

Data Curation - transporting meaning: Data Curation views the object in its intellectual

context and over its whole life cycle. It aims to preserve the meaning of the digital object to

foster comprehension and re-usability in the future when the original context (e.g. the crea-

tors, organisational environment) has disappeared. Components of Data Curation include data

and metadata modelling, appraisal of the object's value, integration of the data item in usage

environments, object versioning, access control, and others. Examples include the life cycle of

12

 WissGrid Delivearbe 3.1 „Generische Langzeitarchivierungsarchitektur für D-Grid“, figure 2, p. 8

(http://www.wissgrid.de/publikationen/deliverables/wp3/WissGrid -D3.1-LZA-Architektur-v1.1.pdf)
13

 Kenneth Thibodeau: Overview of Technological Approaches to Digital Preservation and Challenges in Co m-

ing Years. CLIR Report, 2002. http://www.clir.org/pubs/reports/pub107/thibodeau.html

http://www.wissgrid.de/publikationen/deliverables/wp3/WissGrid-D3.1-LZA-Architektur-v1.1.pdf
http://www.clir.org/pubs/reports/pub107/thibodeau.html

TextGrid_R121_v1.0.doc 11 13.12.2010

instrumental data, as it is captured, cleaned, filtered, and processed iteratively; or the enrich-

ment of ancient texts with dictionaries and other contextual data from their time of creation.

Figure 6: Curation Levels and Preservation Services.
14

3.2. Profile for Interactive Research Environments

As part of its objective to support content preservation and data curation for research data,

WissGrid analysed different integration patterns of e.g. grid technologies and preservation

services. It also developed approaches for the integration of digital repositories into grid envi-

ronments:

A Repositories as data backends for grid processing

B Data grids as repository storage for interactive research environments

C Virtualisation of digital objects in federated repositories

Figure 7: Grid / Repository Integration Patterns
15

14

 WissGrid Deliverabe 3.5.2 „WissGrid-Spezifikation: Grid-Repository“, figure 3, p. 13

(http://www.wissgrid.de/publikationen/deliverables/wp3/WissGrid-D3.5.2-grid-repository-spezifikation.pdf)
15

 Andreas Aschenbrenner, „Elements of a Curation Grid“, Presentation at ISGC2010,

http://event.twgrid.org/isgc2010/slides/isgc2010-aaschen_CurationGrid.pdf (slightly modified)

http://www.wissgrid.de/publikationen/deliverables/wp3/WissGrid-D3.5.2-grid-repository-spezifikation.pdf
http://event.twgrid.org/isgc2010/slides/isgc2010-aaschen_CurationGrid.pdf

TextGrid_R121_v1.0.doc 12 13.12.2010

The application profile 'B' was developed for community grids producing their data in virtual

research environments, where users work collaboratively and usually web-based on the data,

and want their data to be long-term and trustworthily archived and curated in the grid. This

profile provides maximum support for individually adapted data and metadata models, and the

modelling of research processes and data life-cycles.

Specific requirements:

 Scalability – repository and preservation/curation services must be able to handle both

huge amounts of small objects, for instance, in the case of TextGrid, the approx.

140.000 entries of the Campe dictionary
16

 as XML (TEI) files, and (usually) smaller

amounts of large files, e.g. scans. To avoid unnecessary delays with the transfer of

large files, it would be useful to implement the preservation (or other) services as

computing services on the respective (data) grid nodes.

 Seamless integration in existing, mostly web-based research environments – to-

day, interactive and collaborative research environments usually make extensive use

of HTTP-/REST-based technologies. In terms of user-orientation, these technologies

must be integrated.

 Flexible modelling of metadata and object models – users must be able to define

specific metadata models and relations between objects. During the data / research

life-cycle, those information may be enriched and steadily augmented (technical meta-

data, annotations, relations – Linked Data).

The development of web-based repositories with open and flexible (user) interfaces, support-

ing the handling of complex objects (like DSpace
17

, Fedora
18

 or EPrints
19

) is driven forward

by an active and international community in the context of the Open Repositories. Since the

combination of web-based repositories with data grids is already well-tried (e.g. DSpace with

SRB) and there are several projects and initiatives working on interfacing Fedora with

iRODS
20

, WissGrid is aiming for this solution. Actually, an Akubra
21

 module for iRODS was

developed.

According to this profile, iRODS is used as storage infrastructure and Fedora as management

layer for metadata and object models, providing several interfaces for HTTP-/REST-based

access to the repository. This (front-end) architecture offers a broad range of possible com-

munity-specific extensions, for instance building upon frameworks like Muradora
22

 or eSci-

Doc
23

.

16

 Wörterbuch der Deutschen Sprache. Veranstaltet und herausgegeben von Joachim Heinrich Campe (Braun-

schweig 1807-1813) – 6 Volumes.
17

 http://www.dspace.org
18

 http://fedora-commons.org
19

 http://www.eprints.org
20

 http://www.irods.org
21

 https://wiki.duraspace.org/display/AKUBRA/Akubra+Project
22

 http://www.muradora.org
23

 http://www.escidoc.org/

http://www.dspace.org/
http://fedora-commons.org/
http://www.eprints.org/
http://www.irods.org/
https://wiki.duraspace.org/display/AKUBRA/Akubra+Project
http://www.muradora.org/
http://www.escidoc.org/

TextGrid_R121_v1.0.doc 13 13.12.2010

For more information see the WissGrid deliverables available at

http://www.wissgrid.de/publikationen/deliverables/wp3.html.

Figure 8: Grid-based Research Data Repository
24

3.3. Integration with TextGrid

The reconfiguration of the repository infrastructure has to take care that the logical view on

TextGrid and the object model as described above (section 2) remains the same and that the

interoperability between the TextGrid Lab and the TextGrid is upheld. The utilities (TG-

auth*, TG-crud, TG-search) should at least remain as interfaces. For reasons to be explained

later, the only utility suitable to be re-implemented by means of Fedora is TG-crud.

Since the Fedora repository is considered as front-end to the iRODS data grid while WissGrid

provides the connectivity layer between both components, TextGrid in the first place has to

care for the migration of its middleware to a more or less Fedora-based architecture. The only

exception where TextGrid has to talk directly with the iRODS back-end is the bulk ingest.

As currently (autumn 2010) the focus of TextGrid is on stabilising the infrastructure for going

productive in spring 2011 (TextGrid v1.0), and there is still some technical work to be done in

WissGrid, the following sections present only some basic considerations and more or less pre-

liminary sketches. They will become more detailed with further revisions of this report.

24

 Andreas Aschenbrenner, „Elements of a Curation Grid“, Presentation at ISGC2010,

http://event.twgrid.org/isgc2010/slides/isgc2010-aaschen_CurationGrid.pdf

http://www.wissgrid.de/publikationen/deliverables/wp3.html
http://event.twgrid.org/isgc2010/slides/isgc2010-aaschen_CurationGrid.pdf

TextGrid_R121_v1.0.doc 14 13.12.2010

Figure 9: Migration to Fedora

3.3.1. Fedora

The first practical steps in this direction have already been taken together with TEXTvre, a

sister project of TextGrid that is considered to “embed the VRE within the day-to-day re-

search practices at the institution [i.e. King‟s College], and […] integrate it fully with institu-

tional repository and data management infrastructures”
25

 – where these infrastructures are Fe-

dora-based. For this reason, in early 2010 both projects developed a first solution for the inte-

gration of a Fedora repository with the TextGrid infrastructure. Not being a particularly deep

one, this solution (already in use at King‟s College London) can be used as starting point for

further developments: Instead of writing to the Grid via JavaGAT, the TEXTvre instance (cf.

figure 10) makes use of the Fedora API-M. The next step will be to implement the TextGrid

object model(s) by means of the Fedora Digital Object Model and the underlying Content

Model Architecture
26

.

Figure 10: TextGrid and TEXTvre

25

 http://textvre.cerch.kcl.ac.uk
26

 https://wiki.duraspace.org/display/FCR30/Content+Model+Architecture

http://textvre.cerch.kcl.ac.uk/
https://wiki.duraspace.org/display/FCR30/Content+Model+Architecture

TextGrid_R121_v1.0.doc 15 13.12.2010

Object Modelling

Since the logical object, respectively the logical view on TextGrid objects (see section 2.1

above), is mostly modelled by the TextGrid Lab, the modelling in Fedora has to consider pri-

marily the physical objects (cf. section 2.2):

Physical Type Metadata Type

Aggregation Item

Edition

Collection

(Simple) Object Item

Ø Work

Item (External Object)

Modelling objects with Fedora means thinking in Datastreams. Fedora is a file-based data

management system implementing and managing compound objects as Fedora Digital Ob-

jects (FDO). The structure of a FDO outlines as follows:

 Digital Object Identifier – a persistent, repository-internal identifier (PID) for the object,

not to be confused with global referencing systems like Handle, URN, DOI etc. Since the

NOID service deployed in TextGrid to generate TextGrid URIs (see above) can also be set

up as a name resolver, the TextGrid middleware should be able to handle both types of

identifiers (need to be verified, though).

 System Properties (Object State, the Content Model it subscribes, and other properties

that are necessary to manage and track the object in the repository), and

 several Datastreams

Each object contains up to four reserved and an arbitrary number of user-defined Datastreams

(cf. figure 11):

 RELS-EXT – describes relationships to other FDOs

 RELS-INT – Internal relationships from digital object Datastreams (optional)

 DC (Dublin Core) – metadata about the object

 AUDIT (Audit Trail) – records all changes made to the object (system-generated)

 N Datastreams – the actual content items. For the different types of these Datastreams as

Internal XML Content, Managed Content, Externally Referenced Content, and Redirect

Referenced Content see the official Fedora documentation
27

. If not otherwise mentioned,

we usually refer to Managed Content: “The content is stored in the repository and the digi-

tal object XML maintains an internal identifier that can be used to retrieve the content from

storage”
28

.

27

 https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model#FedoraDigitalObjectModel -

Datastreams
28

 ibid.

https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model#FedoraDigitalObjectModel-Datastreams
https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model#FedoraDigitalObjectModel-Datastreams

TextGrid_R121_v1.0.doc 16 13.12.2010

Figure 11: The Fedora Digital Object Model
29

All this information constituting a FDO is kept in an XML document (FOXML) that is physi-

cally stored together with the related Datastreams (versions) in an iRODS data grid instance,

approximately as:

/objectStore/FOXML

 ...

/datastreamStore/object-id/DS1/DS1.0

 DS1.1

 ...

The relations specified in the RELS-Datastreams are automatically indexed and stored in a

triplestore
30

 (Mulgara per default) – quite the same as in the current implementation of the

TextGrid middleware (cf. section 2.3).

Furthermore, Fedora allows for the definition of so-called Content Model Objects, specifying

characteristics (structural, behavioral and semantic information) for the definition of “classes”

of FDOs
31

.

Given these instruments, the modelling of TextGrid objects in Fedora is supported in many

ways. According to the (physical) object types in TextGrid, three (single-object) Content

Models have to be specified. Without going into details (which is subject to future revisions

of this report) we only will have a look at the arrangement of Datastreams (DS).

29

 https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model
30

 https://wiki.duraspace.org/display/FCR30/Digital+Object+Relationships
31

 https://wiki.duraspace.org/display/FCR30/Content+Model+Architecture

https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model
https://wiki.duraspace.org/display/FCR30/Digital+Object+Relationships
https://wiki.duraspace.org/display/FCR30/Content+Model+Architecture

TextGrid_R121_v1.0.doc 17 13.12.2010

Simple Object Type

There is no more need for managing file pairs (at least at Fedora repository level) as described

above (section 2.2) since content and metadata can be managed as two Datastreams of one

single FDO (figure 12). Possibly a task for the Adaptor manager is the mapping of TextGrid

metadata to the required DC Datastream. Since the latter contains only a minimal set required

by the repository system, the TextGrid infrastructure must be aware that the really relevant

metadata is stored in a particular Datastream distinct from the DC DS. The TextGrid-specific

relations can be stored within the RELS-EXT Datastream.

Figure 12: TextGrid Simple Object Type

Aggregation Type

Aggregations can be implemented in (at least) two ways: Since the current implementation

keeps the information about the aggregated objects in the object‟s content (see example

above, section 2.2), this pattern can be transferred 1:1 as a corresponding DS (figure 13, left).

The other possibility would be to extract the ore:aggregates terms and insert them as rela-

tions (RDF triples) into the RELS-EXT DC (figure 13, right). Since the technical effort for the

implementation of both variants seems to be almost equal, the eventual implementation must

take into account the performance of the corresponding search (XMLDB vs. triplestore).

Figure 13: TextGrid Aggregation Type – Implementation Variants

TextGrid_R121_v1.0.doc 18 13.12.2010

Empty (Ø) Type

The only TextGrid-specific DS for Work is the metadata DS. In the same way ‘External’ Ob-

jects could be handled. But since Fedora allows for specialised Datastreams for Externally

Referenced Content, it would perfectly make sense to differentiate between the two cases and

introduce a separate Content Model for ‘External’ Objects with an additional Datastream for

the reference(s) to the remote object content.

Open Issues

The TextGrid rights and user management will be kept outside the Fedora repository infra-

structure for several reasons:

 Since the TG-search will not – or not deeply – be implemented with Fedora (see below),

and each query has to contact the RBAC to determine whether the current user is allowed

to see (and find) an object, it is easier and (presumably) faster to do this directly.

 It is not determined yet in which way user information should be passed to the iRODS sys-

tem, whether the Fedora repository has to pass through user credentials as certificates, or

whether the Fedora instance acts as a user of its own.

 The TextGrid Project is modelled according to information extracted from the RBAC sys-

tem. It would be difficult to re-implement this functionality with Fedora components.

 The new Fedora Security Layer (FeSL) is still considered as being experimental
32

 - so it

would be better to wait for a production release.

For the time being, TextGrid will interact with the Fedora repository with one single adminis-

trator user and TG-auth* will remain as it is. This solution requires only minimal changes in

the TextGrid infrastructure since TG-crud already interacts with the grid with a robot certifi-

cate.

The same goes more or less for TG-search. As one of the strengths of TextGrid is the possibil-

ity to search across XML content via XPath expressions or user-defined XQueries (BTW all

search requests are internally modelled as XQueries – except SPARQL for RDF queries) and

the Fedora Generic Search Service (GSearch) hitherto only supports the implementation of

full text search engines like Lucene, SOLR and Zebra, TG-search has to deploy further on its

eXist XMLDB (with its own Lucene instance) and its own XQuery-based application logic.

But there is no reason not to make use of the Fedora-internal triplestore for RDF queries.

Deeper Integration – Modularization of TG-crud

In contrast to the other utilities, the Fedora-based re-design of TG-crud is indeed an option.

As mentioned above (section 2.4), TG-crud bundles most of the middleware‟s application

logic and performs many atomic actions like generating and assigning TextGrid URIs, ex-

tracting information out of (XML) object content and metadata, passing (and deleting) the in-

formation to the indices (XMLDB, triplestore), performing I/O operations on the grid etc.

In terms of maintainability and – to be verified – performance it would be useful to implement

these components as autonomous modules. Making use of the Fedora messaging framework
33

(i.e. the Java Messaging Service), it should be possible to call the individual modules – if ap-

plicable asynchronously – when needed (figure14). For instance, an object can be stored

quickly in the repository while the modules responsible for creating a baseline-encoded in-

32

 https://wiki.duraspace.org/display/FCR30/Fedora+Security+Layer+%28FeSL%29
33

 https://wiki.duraspace.org/display/FCR30/Messaging

https://wiki.duraspace.org/display/FCR30/Fedora+Security+Layer+%28FeSL%29
https://wiki.duraspace.org/display/FCR30/Messaging

TextGrid_R121_v1.0.doc 19 13.12.2010

stance of the object and feeding the search indices can perform their tasks with a certain de-

lay.

Figure 14: Re-Design of TG-crud

Projects, Revisions and the eSciDoc Solutions

Some of the features provided by eSciDoc, which is build upon Fedora, find an almost perfect

match in concepts developed by TextGrid. The most striking example is the logical Content

Model (figure 15), where the Context corresponds to the TextGrid Project, Container is the

equivalent of Aggregation, and Item matches the Item. Another example is the versioning

concept that is almost equivalent to the Revisions in TextGrid (see section 2.2 above).

Figure 15: The eSciDoc Content Model
34

However, the general question how and to what extend TextGrid can make use of eSciDoc

code and solutions is not easily to be answered, as there are also some significant differences

between the two infrastructures, such as rights management and search concepts. These ques-

34

 https://www.escidoc.org/JSPWiki/en/ContentModel

https://www.escidoc.org/JSPWiki/en/ContentModel

TextGrid_R121_v1.0.doc 20 13.12.2010

tions will be dealt with in the TextGrid work package 1.3 “Cooperation with eSciDoc” during

the next months. (More to come with the next versions of this report.)

3.3.2. Grid Storage: iRODS

iRODS
35

 is a data grid software system implementing a Rule Engine which allows for ex-

pressing data management and preservation policies as sets of rules defining actions (so-

called Micro-Services) to be executed under specified conditions, for instance at certain

events or regularly, according to user-defined intervals. For instance, there are Micro-Services

for data replication, checksum verification (on ingest or regularly), metadata extraction, re-

mote service calls etc. It is also possible to write and implement new Micro-Services.

As already mentioned (section 3.2), according to the WissGrid implementation, the Fedora

repository is connected with the iRODS server via Akubra, its default low-level storage inter-

face
36

, with an Akubra-iRODS module. It is also possible to add other modules, such as an

Akubra-GridFTP module.

In terms of scalability and performance, data-intense ingests with huge amounts of small files

or smaller amounts of large files should not be performed via Fedora but directly via iRODS.

Both the icommands command-line utilities and the Jargon Java API provide for performance

optimisation through multi-threading. With ingest completed, a callback mechanism is trig-

gered invoking certain Micro-Services which perform the necessary actions (query iCAT,

create/modify FOXML) to register the modifications with the Fedora repository.

35

 http://www.irods.org
36

 https://wiki.duraspace.org/display/AKUBRA/Akubra+Project

http://www.irods.org/
https://wiki.duraspace.org/display/AKUBRA/Akubra+Project

	Introduction
	TextGrid Basics – Concepts and Infrastructure
	The Logical View
	Project and Aggregation
	Object Types: Item, Edition, Work and Collections

	The Physical View
	Search Index and Baseline Encoding
	The Three Pillars of TextGrid
	Rights Management Issues and Publication

	WissGrid and the Grid-Repository as Part of the LTP-Architecture for D-Grid
	General Concept
	Profile for Interactive Research Environments
	Integration with TextGrid
	Fedora
	Object Modelling
	Simple Object Type
	Aggregation Type
	Empty (Ø) Type

	Open Issues
	Deeper Integration – Modularization of TG-crud
	Projects, Revisions and the eSciDoc Solutions

	Grid Storage: iRODS

